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Abstract

Evaluating the performance of generative
models for unsupervised learning is inher-
ently challenging due to the lack of well-
defined and tractable objectives. This is par-
ticularly difficult for implicit models such
as generative adversarial networks (GANs)
which perform extremely well in practice
for tasks such as sample generation, but
sidestep the explicit characterization of a
density. We propose Flow-GANs, a gener-
ative adversarial network with the genera-
tor specified as a normalizing flow model
which can perform exact likelihood eval-
uation. Subsequently, we learn a Flow-
GAN using a hybrid objective that inte-
grates adversarial training with maximum
likelihood estimation. We show empirically
the benefits of Flow-GANs on MNIST and
CIFAR-10 datasets in learning generative
models that can attain low generalization er-
ror based on the log-likelihoods and gener-
ate high quality samples. Finally, we show a
simple, yet hard to beat baseline for GANs
based on Gaussian Mixture Models.

1. Introduction

Highly expressive parametric models have enjoyed
great success in supervised learning, where learning
objectives and evaluation metrics are typically well-
specified and easy to compute. On the other hand,
the learning objective for unsupervised settings is less
clear. At a fundamental level, the idea is to learn a
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generative model that minimizes some notion of di-
vergence with respect to the data distribution. Mini-
mizing the classic Kullback-Liebler (KL) divergence
between the data distribution and the model, for in-
stance, is equivalent to performing maximum likeli-
hood estimation (MLE) on the observed data. Maxi-
mum likelihood estimators are asymptotically statis-
tically efficient, and serve as natural objectives for
learning prescribed generative models (Mohamed &
Lakshminarayanan, 2016).

In contrast, an alternate principle that has recently at-
tracted much attention is based on adversarial train-
ing, where the objective is to generate data indis-
tinguishable from the training data. Adversarially
trained generative models can sidestep specifying an
explicit density for the observed data and are referred
to as implicit models (Diggle & Gratton, 1984). In
practice, adversarially trained implicit models such as
generative adversarial networks (GAN; (Goodfellow
et al., 2014)) generate high-quality samples outper-
forming samples obtained from models learned us-
ing MLE. While the evaluation of implicit models re-
mains a challenge, recent work in approximate infer-
ence methods suggests that GAN models attain much
poorer log-likelihoods compared to models trained
with MLE (Wu et al., 2017). The dichotomy in the
current state-of-the-art models is unfortunate, but not
very surprising; as (Theis et al., 2016) demonstrates
using simple examples in the domain of natural im-
ages, maximizing log-likelihoods and generating per-
ceptually good-looking samples are largely uncorre-
lated.

In this work, we propose Flow-GANs, a prescribed
generative model that can be efficiently trained to
achieve the dual objectives of good sample quality
as well as high log-likelihood. At the heart of our
framework we have a normalizing flow model such
as NICE (Dinh et al., 2014) or Real-NVP (Dinh et al.,
2017) which can transform a simple tractable noise
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density (such as isotropic Gaussian) into a complex
density through a sequence of invertible transforma-
tions similar to the generator of a GAN. Crucially,
flow models allow us to tractably evaluate the exact
log-likelihoods as well as perform exact posterior in-
ference over the latent variables while still permit-
ting efficient ancestral sampling, desirable properties
of any probabilistic model that a typical GAN would
not provide.

We use Flow-GANs to propose a new objective
for learning and evaluating generative models that
bridges implicit and prescribed learning by augment-
ing the adversarial training objective with an addi-
tional term corresponding to the log-likelihood of the
data. Alongside, we empirically evaluate some be-
liefs and conjectures regarding the behavior of models
learned using MLE and adversarial training. An exact
evaluation of log-likelihoods also permits us to evalu-
ate non-parameteric methods such as Kernel Density
Estimation (KDE; (Parzen, 1962)) typically used for
density estimation in GANs, and we observe that these
methods are ineffective for density estimation under-
estimating the log-likelihoods by a large margin. We
observe that GANs produce poor log-likelihoods and
great samples without memorizing the data. Perhaps
surprisingly, we conclude by comparing GANs with
a simple yet hard to beat baseline based on Gaus-
sian Mixture Models that outperforms GANs on met-
rics corresponding to both log-likelihood evaluation
and generating high-quality samples for complex real-
world datasets.

2. Preliminaries

We begin with a review of generative modeling in the
context of generative adversarial networks and nor-
malizing flow models. For ease of presentation, all
distributions are w.r.t. any arbitrary x ∈ Rd, un-
less otherwise specified. We use upper-case symbols
to denote probability distributions and assume they
all admit absolutely continuous densities (denoted by
the corresponding lower-case notation) on a reference
measure dx.

Consider the following setting for parametric learning
in generative models. Given some data X = {xi ∈
Rd}mi=1 sampled i.i.d. from an unknown probability
density pdata, we are interested in learning a paramet-

ric density pθ where θ denotes the parameters of the
model.

2.1. Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et al.,
2014) are a class of probabilistic models consisting of
a pair of generator and discriminator. The generator,
denoted by a deterministic function Gθ : Rk → Rd
takes as input a source of randomness z ∈ Rk sam-
pled from a tractable prior distribution p(z) and trans-
forms it to a sample Gθ(z). Samples generated by
the model along with the true data X are then passed
on to the discriminator, denoted by another function
Dφ : Rd → R parameterized by φ.

The discriminator acts as a binary classifier that tries
to distinguish the true data from the model generated
samples by maximizing a suitable objective (such as
the negative cross entropy). The generator minimizes
the same objective, such that the overall objective as-
sumes a minimax formulation,

min
θ

max
φ

Ex∼Pdata
[logDφ(x)]

+ Ez∼Pz [log (1−Dφ(Gθ(z)))] . (1)

where we have assumed that the discriminator is max-
imizing the negative cross-entropy as originally pro-
posed in (Goodfellow et al., 2014). The generators
and discriminators are typically deep neural networks.

Recent work has generalized the objective in Eq. (1)
to arbitrary f -divergences (Nowozin et al., 2016) and
integral probability metrics (Zhao et al., 2017; Suther-
land et al., 2017). In particular, Wasserstein GAN
(WGAN, (Arjovsky et al., 2017)), where the minimax
is over the Wasserstein distance between the model
and data distributions, has been shown to exhibit good
theoretical properties and empirical performance in
stabilizing GAN training,

min
θ

max
φ∈F

Ex∼Pdata
[Dφ(x)]− Ez∼Pz [Dφ(Gθ(z))] .

(2)

where F is the class of 1−Lipschitz functions. In
practice, the Lipschitz constraint is imposed by clip-
ping weights for the discriminator (referred to as critic
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in the original work (Arjovsky et al., 2017)) or adding
a gradient penalty term to the objective (Gulrajani
et al., 2017).

2.2. Normalizing flow models

A normalizing flow specifies a parametric transforma-
tion from a prior density p(z) : Rd → R+

0 to another
density over the same space, pθ(x) : Rd → R+

0 . The
transformation is specified via an invertible transfor-
mation, fθ : Rd → Rd. Using the change-of-variables
formula and letting z = fθ(x) we have

pθ(x) = p(z)

∣∣∣∣det∂fθ(x)∂x

∣∣∣∣ (3)

where ∂fθ(x)
∂x denotes the Jacobian of fθ at x. The

above formula can be applied recursively over compo-
sitions of many invertible transformations to produce
a complex final density. Hence, we can evaluate and
optimize for the log-likelihood assigned by the model
to a data point as long as the prior density is tractable
and the determinant of the Jacobian of fθ evaluated at
x can be efficiently computed.

The Jacobian of high-dimensional distributions can
however be computationally expensive to compute. If
the transformations are designed such that the Jaco-
bian is an upper or lower triangular matrix, then the
determinant can be easily evaluated as the product of
its diagonal entries. Based on prior work in flow mod-
els, we consider two such family of transformations.

1. Volume preserving transformations in
NICE (Dinh et al., 2014): The model con-
sists of several layers of additive coupling layers
that perform a location transformation with a
unit Jacobian determinant. The top layer is a
diagonal scaling matrix.

2. Non-volume preserving transformations in Real-
NVP (Dinh et al., 2017): Every coupling layer
performs both a location and scale transforma-
tion, and hence, the Jacobian determinant is not
necessarily unity.

We direct the reader to (Dinh et al., 2014; 2017) for
the precise specifications of the transformations. The

learning objective for both Real-NVP and NICE cor-
responds to MLE,

max
θ

Ex∼Pdata
[log pθ(x)] (4)

Since the transformations are invertible, ancestral
sampling is possible in these models by sampling a
random vector z ∼ Pz and transforming it to a model
generated sample via gθ = f−1θ .

3. Flow generative adversarial networks

Evaluating the log-likelihood assigned by a generative
adversarial network is challenging because the model
density pθ is specified only implicitly using the prior
density pZ and the deterministic generator function
Gθ.

One way to make the model density explicit is to view
the GAN as a latent variable model and parameter-
ize the observation model, pθ(x|z) as some noise dis-
tribution such as a Gaussian (Wu et al., 2017). This
assumption alone is not sufficient since the marginal
likelihood of the observed data, pθ(x) =

∫
pθ(x, z)dz

in this case would be intractable as it requires integrat-
ing over all the latent factors of variation. This would
then require approximate inference (e.g., Monte Carlo
or variational methods) which in itself is a challenge
for high-dimensional distributions.

Alternatively if the generator function Gθ is designed
to be reversible such that G−1θ exists and the prior
density pZ can be evaluated tractably, we can com-
pute the log-likelihood assigned by a model directly
using the change-of-variables formula. Substituting
for f = G−1θ to Eq. (3), we have the log-likelihood
assigned by a GAN model to a data point as,

log pθ(x) = log p(G−1θ (x)) + log

∣∣∣∣∣det∂G−1θ (x)

∂x

∣∣∣∣∣
(5)

where ∂G−1
θ (x)

∂x denotes the Jacobian of G−1θ at x. De-
noting z = G−1θ (x), we see that the first term corre-
sponds to the prior density in a GAN which is typi-
cally chosen to correspond to a simple analytical dis-
tribution such as an isotropic Gaussian.

Requiring the generator function Gθ to be reversible
imposes a constraint on the dimensionality of the la-



Flow-GAN: Bridging implicit and prescribed learning in generative models

tent variable z to match that of the data x. There-
after, we require the transformations between the var-
ious layers of the generator to be invertible such that
their overall composition results in an invertible Gθ.
For instance, these transformations could correspond
to the ones used in volume preserving or non-volume
preserving models as discussed in the previous sec-
tion.

Crucially, we can exactly evaluate log-likelihoods of
any GAN model by specifying the generator as a nor-
malizing flow model. We refer to such models as
flow generative adversarial networks (Flow-GANs).
A Flow-GAN can be trained using MLE, adversar-
ial training or a hybrid objective based on both these
inductive principles. Without loss of generality, let
V (Gθ, Dφ) denote the minimax objective of a GAN.
The hybrid objective of a flow-GAN can be expressed
as,

min
θ

max
φ

V (Gθ, Dφ)− λEx∼Pdata
[log pθ(x)] (6)

where λ ≥ 0 is a hyperparameter for the algorithm.
By varying λ, we can interpolate between plain adver-
sarial training (λ = 0) and MLE (very high λ). Con-
sequently, the generator is inclined to generate sam-
ples indistinguishable from the real data to fool the
discriminator as well as assign high log-likelihoods to
the observed data. Overfitting to the observed data can
be detected by cross-validation, and performing early
stopping of training when the log-likelihoods on the
training and validation sets begin to diverge.

4. Experiments

We conduct three different kinds of experiments. In
the first set of experiments, we evaluate the merits of
training Flow-GANs (Eq. (6)) over plain maximum
likelihood estimation and adversarial training in terms
of log-likelihoods and recently proposed sample qual-
ity metrics. The second set of experiments compares
non-parameteric methods for density estimation (e.g.,
KDE) with the exact log-likelihoods computed by a
flow model. Finally, we show a simple baseline based
on Gaussian Mixture Models that outperforms adver-
sarial training in terms of both log-likelihoods and
sample quality metrics.

Datasets. We experiment with the MNIST dataset
of handwritten digits (LeCun et al., 2010) and the
CIFAR-10 dataset of natural images (Krizhevsky &
Hinton, 2009).The MNIST dataset contains 50, 000
train, 10, 000 validation, and 10, 000 test images of di-
mensions 28×28. The CIFAR-10 dataset (Krizhevsky
& Hinton, 2009) contains 50, 000 train and 10, 000
test images of dimensions 32 × 32 × 3 by default.
We randomly hold out 5, 000 training set images as
validation set. Since we are modeling densities for
discrete datasets (pixels can take a finite set of values
ranging from 1 to 255), the model can assign arbitrar-
ily high log-likelihoods to these discrete points. Fol-
lowing (Uria et al., 2013), we avoid this scenario by
dequantizing the data where uniform noise between 0
and 1 is added to every pixel. Finally, we scale the
pixels to lie between 0 and 1.

Model architecture. We used the NICE (Dinh
et al., 2014) and Real-NVP (Dinh et al., 2017) ar-
chitectures as the normalizing flow generators for the
MNIST and CIFAR-10 datasets respectively. For ad-
versarial training, we consider the improved WGAN
objective (Eq. (2)) which enforces the Lipschitz con-
straint over the critic by penalizing the norm of the
gradient with respect to the input (Gulrajani et al.,
2017). The critic architecture for the MNIST dataset
is the same as the one used in the DCGAN (Radford
et al., 2015). The batch normalization layer is re-
moved as recommended (Gulrajani et al., 2017). For
the CIFAR-10 experiments we again use the DCGAN
architecture with an extra convolutional layer. Batch
normalization (Ioffe & Szegedy, 2015) here was sub-
stituted by layer normalization (Ba et al., 2016).

Hyperparameters. The hyperaparmeters specific
to adversarial training with the Wasserstein distance
were fixed as per (Gulrajani et al., 2017). For all
models trained on MNIST, we used a logistic prior
distribution for the NICE architecture. The weights
were initialized using the truncated normal distribu-
tion. For the models trained using MLE, batch size
was set to 200, learning rate was 0.001 with a de-
cay of 0.9995 and the optimizer used was Adam with
β1 = 0.9, β2 = 0.999. For the other models, the batch
size was set to 100, and the optimizer used was Adam
with β1 = 0.5, β2 = 0.999 and a learning rate was
0.0001. Finally, we set λ = 0.1 in Eq. (6) for the
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Flow-GAN model.

In the case of models trained on CIFAR-10, an
isotropic Gaussian prior was used. We also used
weight normalization and data dependent initializa-
tion (Salimans & Kingma, 2016) for all the mod-
els. The models trained with MLE used a batch
size of 100, a learning rate of 0.0001 with a de-
cay of 0.999995 and the Adam optimizer with β1 =
0.9, β2 = 0.999. The other models used a batch size
of 64, a learning rate of 0.0001 and the Adam opti-
mizer with β1 = 0.5, β2 = 0.999. We set λ = 1 in
Eq. (6) for the Flow-GAN model.

4.1. Log-likelihood vs. sample quality

Experimental setup. Using a normalizing-flow
generator, we compare the performance of three learn-
ing objectives. The first objective corresponds to the
maximum likelihood estimation (MLE, Eq. (4)), the
second corresponds to adversarial training (WGAN,
Eq. (2)), and the final one is the hybrid objective
(Flow-GAN, Eq. (6)) we propose.

For evaluating sample quality, we use two metrics de-
signed for labeled datasets that are consistent with
standard practice. For the MNIST dataset, we report
the recently proposed MODE score (Che et al., 2017)
calculated as,

exp (Ex∈Pθ [KL(p(y|x)‖p
∗(y)]−KL(p∗(y)‖p(y)))

where x is a sample generated by the model, p(y|x)
is the softmax probability assigned by a pretrained
classifier, p∗(y) is the true distribution of labels and
p(y) is the distribution of labels in the generated sam-
ples (as predicted by the pretrained classifier). For the
CIFAR-10 dataset, the common practice is to report
the Inception scores calculated as,

exp (Ex∈Pθ [KL(p(y|x)‖p(y)]) .

For each of the three objectives, we keep track of
the learning curves corresponding to the negative log-
likelihood on the training and validation sets and
the MODE/Inception scores. Additionally, for the
WGAN and Flow-GAN models, we also track the
Wasserstein loss.

Results. Due to lack of space and in order to keep
the presentation clean, all the samples and learning

curves are deferred to the supplementary. Please re-
fer to the supplementary to aid the following discus-
sion. The learning curves for the three models trained
on the MNIST and CIFAR-10 datasets are reported
in Figures 2, 3, 4, and Figures 5, 6, 7 respec-
tively. The best MODE/Inception scores and the test
negative log-likelihoods (NLL) corresponding to the
best cross-validated models are listed in Table 1 and
Table 2. Following standard practice, we report the
NLLs for MNIST in nats and the NLLs for CIFAR-
10 in bits/dimension. For each learning objective, we
also show the actual samples at various points of train-
ing with the samples attaining the best performance on
sample quality metrics in a green box at the bottom-
right.

The learning curves shed light on key observations re-
garding the dynamics of various objectives. For plain
MLE objective (Figure 2 and Figure 5), we see that the
models attains low validation NLLs (blue) in very few
iterations of generator training. Overfitting is not a
big concern as the train (brown) and validation curves
almost overlap each other. Additionally, the sample
quality metrics (red) show a gradual increase as train-
ing progresses.

However, the models trained using the WGAN ob-
jective (Figure 3 and Figure 6) attain much higher
scores on the sample quality metrics (red, see Table 1
and Table 2 for maximum MODE/Inception scores).
We additionally trace the WGAN loss (green) which
we observe to be strongly correlated with the sample
quality metrics (the WGAN loss decreases as the sam-
ple quality metrics increase). Surprisingly, overfitting
is again not an issue with the WGAN models since
the train (brown) and validation (blue) negative log-
likelihoods overlap with each other suggesting that
WGANs are not simply memorizing the training data.
However, the negative log-likelihood curves show a
largely consistent increase as training progresses (for
the CIFAR-10 dataset, these curves are shown on a
log-scale!) confirming the widely held-viewpoint that
good sample quality scores do not imply good log-
likelihoods. Dissatisfyingly, these results suggest that
the log-likelihoods get worse as learning progresses
for models learned using plain adversarial training.

Finally, the Flow-GAN models (Figure 4 and Fig-
ure 7) trained using the hybrid objective attain both
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Table 1. Best MODE scores and test negative log-likelihood estimates (NLL, in nats) for the best cross-validated NICE models evaluated
using the change-of-variables formula (Exact) and kernel density estimation (KDE) respectively for the MNIST dataset.

Objective MODE Score Exact NLL KDE
MLE 7.42 −3334.56 −159.89± 1.31
WGAN 9.24 −1604.09 486.27± 0.30
Flow-GAN 9.37 −3342.95 −63.51± 0.66

Table 2. Best Inception scores and test negative log-likelihood estimates (NLL, in bits/dim) for the best cross-validated Real-NVP models
evaluated using the change-of-variables formula (Exact) and kernel density estimation (KDE) respectively for the CIFAR-10 dataset.

Objective Inception Score Exact NLL KDE
MLE 2.92 3.54 7.82± 0.002
WGAN 5.76 8.53 8.28± 0.002
Flow-GAN 3.90 4.21 7.79± 0.002

good log-likelihoods (blue) and sample quality scores
(red) as desired (see Table 1 and Table 2 for actual
numbers). For the MNIST dataset, Flow-GAN at-
tains a test log-likelihood of 3342.95 which is a few
nats above the one obtained by MLE (3334.56). Sim-
ilarly, samples generated by the Flow-GAN have a
MODE score of 9.37 which surpasses the MODE
score of 9.24 attained by the WGAN model. Al-
though subjective, the perceptual quality of the sam-
ples with the best MODE scores shown at the bottom-
right of Figures 4 and Figures 3 seems to suggest
the same. For the CIFAR-10 dataset, the Flow-GAN
model smoothly interpolates between the extremes at-
taining reasonable log-likelihoods unlike the WGAN
model and better sample quality metrics than the Real-
NVP model.

4.2. Non-parameteric density estimation

Experimental setup. We draw 10,000 samples
from the MNIST dataset and 5,000 samples from the
CIFAR-10 dataset. For an implicit model that only
allows forward sampling, we can compute its den-
sity using non-parameteric methods such as Kernel
Density Estimation (KDE) by fitting Parzen windows
to samples generated from the model (Bengio et al.,
2013; Goodfellow et al., 2014). In this experiment,
we compute the KDE for the best performing models
(as measured by validation log-likelihoods) on the test
set for the different learning objectives and compare it
with the exact log-likelihoods computed by the flow
model itself.

Results. As we see in both Table 1 and Table 2,
KDE underestimates the true log-likelihood of the
model almost each time. In fact, as we see in Table 2,
it is often not even able to find the correct ranking of
the models, consistent with similar observations made
previously (Theis et al., 2016).

4.3. Generative Adversarial Networks vs.
Gaussian Mixture Models

Experimental setup. We use a mixture of m
isotropic Gaussians with equal weights centered at
each of the m training points as the baseline Gaussian
Mixture Model (GMM). The bandwidth parameter, σ,
is the same for each of the mixture components and
optimized by doing a line search over the validation
log-likelihood in (0, 1]. We compare this model with
the WGAN-only model (same as the previous exper-
iment) on the basis of test log-likelihood and sample
quality metrics as before. We overload the x-axis of
Figure 1 to denote the bandwith values for the GMM
and the number of iterations of generator training for
the WGAN as before.

Results. When the bandwidth, σ, is low, the
GMM (red) produces excellent samples (very high
MODE/Inception scores) but high validation NLLs
because of overfitting. On increasing σ, the GMM
starts to assign log-likelihoods based on non-trivial
contributions from several mixture components in-
creasing its generalization ability to points outside the
training set. However, the sample quality metrics re-
duces in this case representing a clear trade-off. For
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Figure 1. WGAN vs. Gaussian Mixture Models (GMM). Sample quality metrics and validation negative log likelihoods (NLL) for the
MNIST and CIFAR-10 respectively. For appropriate values of the bandwidth parameter, the GMM baseline (vertical green dashed lines)
can achieve better NLL estimates (even on the test set, not shown) and sample quality scores.

the WGAN model (blue), on the other hand, the sam-
ple quality increases as training progresses but the
negative log-likelihoods also increase sharply again
representing a trade-off.

The horizontal green dashed line in the top plots of
Figure 1 denotes the best attainable MODE/Inception
scores by the WGAN model. The GMM clearly can
attain better sample quality metrics. Surprisingly, the
simple GMM also outperforms the WGAN model for
several values of the bandwidth parameter. An ex-
ample bandwidth parameter for a single GMM model
that outperforms the highest MODE score attained by
the WGAN model as well as the lowest negative like-
lihoods attained by the WGAN model at any point
during learning can be seen by noting the bandwidth
corresponding to the vertical green dashed line.

5. Discussion and related work

A wide variety of perspectives have contributed to
advancements in generative modeling. A useful
characterization is distinguishing between prescribed
and implicit density models (Goodfellow, 2016; Mo-
hamed & Lakshminarayanan, 2016). The former are
equipped with a natural ability to specify an explicit
characterization of the density assigned by the model,
and hence, are typically trained using the maximum
likelihood principle. Note that if the prescribed model
is directed, ancestral sampling is also efficient and
hence, we can easily obtain samples from the model.

In the case of implicit models such as generative ad-
versarial networks, we only have tractable access to
samples from the model. Hence, we need to define
a notion of divergence between the data distribution
(only accessible through its samples) and the model
distribution (again, only accessible through its sam-
ples). While this might seem to be a limitation at
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first, the adversarial training objective has achieved
remarkable success across many applications such as
semi-supervised learning (Salimans et al., 2016) and
image super-resolution (Ledig et al., 2016) amongst
many others. The original GAN objective has been
generalized to include f -divergences (Nowozin et al.,
2016), and many integral probability metrics (Suther-
land et al., 2017; Arjovsky et al., 2017).

One of the key takeaways of this work is the sim-
ple observation that even prescribed models can be
trained adversarially as long as sampling from the
model is efficient. This line of reasoning has been
explored to some extent in prior work mostly fo-
cussed on combining the objectives of prescribed la-
tent variable models such as VAEs (maximizing an
evidence lower bound on the data) with adversar-
ial learning typical in implicit models (Larsen et al.,
2015; Mescheder et al., 2017). However, the benefits
of adversarial learning in such latent variable models
does not come for “free” since we still need to resort
to some form of approximate inference to get a han-
dle on the log-likelihoods. This could be expensive,
for instance combining a VAE with a GAN introduces
an additional inference network increasing the overall
model complexity.

The approach adopted in this paper sidesteps the ad-
ditional complexity due to approximate inference by
considering a normalizing flow model. The trade-
off made by a normalizing flow model in this case is
that the generator function needs to be invertible while
other generative such as VAEs have no such require-
ment. On the positive side, we can exactly evaluate
log-likelihoods assigned by the model which can then
be combined with the adversarial learning objective.
Other methods for evaluating log-likelihoods such as
KDE exist, but suffer from the curse of dimension-
ality (Theis et al., 2016). Recently, (Wu et al., 2017)
proposed to use Annealed Importance Sampling (AIS)
for evaluating log-likelihoods assigned by the gener-
ator. In order to do so, one needs to assume a noisy
observation model (such as a Gaussian), and subse-
quently run potentially expensive Markov chains. Be-
sides (Dinh et al., 2014; 2017), normalizing flow mod-
els have also been used to increase the expressiveness
of posterior distributions for variational inference in
latent variable models (Rezende & Mohamed, 2015).

6. Conclusion

As an attempt to more quantitatively evaluate genera-
tive models, we introduced Flow-GAN. It is a gener-
ative adversarial network which allows for tractable
likelihood evaluation, exactly like in a flow model.
Since it can be trained both adversarially (like a GAN)
and in terms of MLE (like a flow model), we can quan-
titatively evaluate the trade-offs involved in a princi-
pled fashion. In particular, we also consider a hybrid
objective function which involves both types of losses.
On MNIST, our hybrid Flow-GAN objective outper-
forms both pure MLE and a pure adversarial training,
both in terms of sample quality and log likelihood. On
CIFAR-10, our Flow-GAN objective outperforms a
pure MLE approach in terms of visual sample quality,
and is only slightly worse in terms of log-likelihood.
Flow-GAN dramatically outperforms a pure GAN ob-
jective in terms of log-likelihood, while still providing
reasonable samples.

A second objective of this research was to evaluate
the effectiveness of existing approximate likelihood
evaluation schemes in a domain where ground truth
is available. Our results confirm that KDE is a very
poor approximation of the true log-likelihood (at least
for the models we considered), and should therefore
not be used to rank different generative models.

Finally, the availability of quantitative metrics al-
low us to compare to simple baselines which essen-
tially “remember” the training data. Our final re-
sults show that naive Gaussian Mixture Models out-
performs plain WGAN on both samples quality and
log-likelihood for both MNIST and CIFAR-10 which
we hope will lead to new directions for both implicit
and prescribed learning in generative models.
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and Rifai, Salah. Better mixing via deep represen-
tations. In ICML, 2013.

Che, Tong, Li, Yanran, Jacob, Athul Paul, Bengio,
Yoshua, and Li, Wenjie. Mode regularized genera-
tive adversarial networks. In ICLR, 2017.

Diggle, Peter J and Gratton, Richard J. Monte carlo
methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society. Series
B (Methodological), pp. 193–227, 1984.

Dinh, Laurent, Krueger, David, and Bengio, Yoshua.
NICE: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516, 2014.

Dinh, Laurent, Sohl-Dickstein, Jascha, and Bengio,
Samy. Density estimation using real NVP. In ICLR,
2017.

Goodfellow, Ian. NIPS 2016 tutorial: Gen-
erative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron, and Bengio, Yoshua. Generative
adversarial nets. In NIPS, 2014.

Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Mar-
tin, Dumoulin, Vincent, and Courville, Aaron.
Improved training of Wasserstein GANs. arXiv
preprint arXiv:1704.00028, 2017.

Ioffe, Sergey and Szegedy, Christian. Batch normal-
ization: Accelerating deep network training by re-
ducing internal covariate shift. In ICML, 2015.

Krizhevsky, Alex and Hinton, Geoffrey. Learning
multiple layers of features from tiny images. 2009.

Larsen, Anders Boesen Lindbo, Sønderby,
Søren Kaae, Larochelle, Hugo, and Winther, Ole.
Autoencoding beyond pixels using a learned sim-
ilarity metric. arXiv preprint arXiv:1512.09300,
2015.

LeCun, Yann, Cortes, Corinna, and Burges, Christo-
pher JC. MNIST handwritten digit database.
http://yann. lecun. com/exdb/mnist, 2010.

Ledig, Christian, Theis, Lucas, Huszár, Ferenc, Ca-
ballero, Jose, Cunningham, Andrew, Acosta, Ale-
jandro, Aitken, Andrew, Tejani, Alykhan, Totz, Jo-
hannes, Wang, Zehan, et al. Photo-realistic single
image super-resolution using a generative adver-
sarial network. arXiv preprint arXiv:1609.04802,
2016.

Mescheder, Lars, Nowozin, Sebastian, and Geiger,
Andreas. Adversarial variational Bayes: Unifying
variational autoencoders and generative adversarial
networks. arXiv preprint arXiv:1701.04722, 2017.

Mohamed, Shakir and Lakshminarayanan, Balaji.
Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Nowozin, Sebastian, Cseke, Botond, and Tomioka,
Ryota. f-GAN: Training generative neural sam-
plers using variational divergence minimization. In
NIPS, 2016.

Parzen, Emanuel. On estimation of a probability den-
sity function and mode. The annals of mathemati-
cal statistics, 33(3):1065–1076, 1962.

Radford, Alec, Metz, Luke, and Chintala, Soumith.
Unsupervised representation learning with deep
convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

Rezende, Danilo Jimenez and Mohamed, Shakir. Vari-
ational inference with normalizing flows. In ICML,
2015.

Salimans, Tim and Kingma, Diederik P. Weight nor-
malization: A simple reparameterization to accel-
erate training of deep neural networks. In NIPS,
2016.



Flow-GAN: Bridging implicit and prescribed learning in generative models

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech,
Cheung, Vicki, Radford, Alec, and Chen, Xi. Im-
proved techniques for training GANs. In NIPS,
2016.

Sutherland, Dougal J, Tung, Hsiao-Yu, Strathmann,
Heiko, De, Soumyajit, Ramdas, Aaditya, Smola,
Alex, and Gretton, Arthur. Generative models and
model criticism via optimized maximum mean dis-
crepancy. In ICLR, 2017.
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Figure 2. MNIST: The log-likelihoods from MLE are impressive, but the MODE scores are poor.
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Figure 3. MNIST: WGAN attains high MODE scores, but poor log-likelihoods.
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Figure 4. MNIST: Flow-GAN attains higher log-likelihoods and higher MODE scores than both pure MLE and adversarial-based learn-
ing.
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Figure 5. CIFAR-10: The log-likelihoods from MLE are impressive, but the Inception scores are poor.
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Figure 6. CIFAR-10: WGAN attains very high Inception scores, but poor log-likelihoods.
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Figure 7. CIFAR-10: Flow-GAN attains reasonably high log-likelihoods and Inception scores.


